Stability: an epidemiological ingredient in the realism debate?

I’m preparing a talk on stability for the New Thinking in Scientific Realism Conference that opens in Cape Town tomorrow. I introduced the notion of stability in my book, defined like this:

“A result, claim, theory, inference, or other scientific output is stable if and only if

(a) in fact, it is not soon contradicted by good scientific evidence; and

(b) given best current scientific knowledge, it would probably not be soon contradicted by good scientific evidence, if good research were done on the topic.” (Broadbent 2013, 63)

The introduction of this notion was a response to the perceived difficulties around “translating” epidemiological (or more generally biomedical) findings into good health policy. At Euroepi in Porto, 2012, I argued that translation was not the main or only difficulty for using epidemiological results, and that stability – or rather, the lack of it – was important. After all, one cannot comfortably rely on a result if one cannot be confident that the next study won’t completely contradict it, and that seems to happen pretty often in at least some areas of epidemiological investigation.

Thus the reasons for introducing the notion were thoroughly practical. More recently, though, I have been trying to tighten up the philosophical credentials of the notion, and that’s what I’m going to be talking about in Cape Town. Is stability epistemically significant? Can it be shown to be epistemically significant without collapsing into approximate truth? Can it be distinguished from approximate truth without collapsing into empirical adequacy? These are the questions I will seek to answer.

What’s interesting for me is that, as far as I can see, it’s pretty easy to answer these questions affirmatively. If I’m right about that, then this will be a nice case where studying actual science gives rise to new philosophical insights. The desire to make public health policy that will not have to be revised six months down the line is eminently practical; yet the proposal of a status that scientific hypotheses might have, distinct from truth and empirical adequacy and all the rest, is eminently abstract. If stability really is both defensible and novel, then it will illustrate the oft-repeated mantra that philosophers of science would benefit from looking more closely at science. I am personally put on guard when I hear that said, not because I disagree in principle, but because experience has taught me to suspect either lip service, or an excuse for poor philosophy. Perhaps I’m also guilty of one or both of these; I will be interested to see what Cape Town says.

The Myth of Translation

Next week I am part of a symposium at EuroEpi in Porto, Portugal with the title Achieving More Effective Translation of Epidemiologic Findings into Policy when Facts are not the Whole Story.

My presentation is called “The Myth of Translation” and the central thesis is, as you would guess, that talk of “translating” data into policy, discoveries into applications, and so forth is unhelpful and inaccurate. Instead, I am arguing that the major challenge facing epidemiological research is assuring non-epidemiologists who might want to rely on those results that they are stable, meaning that they are not likely to be reversed in the near future.

I expect my claim to be provocative in two ways. First, the most obvious reasons I can think of for the popularity of the “translation” metaphor, given its clear inappropriateness (which I have not argued here but which I argue in the presentation), are unpleasant ones: claiming of scientific authority for dearly-held policy objectives; or blaming some sort of translational failing for what are actually shortcomings (or, perhaps, over-ambitious claims) in epidemiological research. This point is not, however, something I intend to emphasize; nor am I sure it is particularly important. Second, the claim that epidemiological results are reasonably regarded by non-epidemiologists as too unstable to be useful might be expected to raise a bit of resistance at an epidemiology conference.

Given the possibility that what I have to say will be provocative, I thought I would try my central positive argument out here.

(1) It is hard to use results which one reasonably suspects might soon be found incorrect.

(2) Often, epidemiological results are such that a prospective user reasonably suspects that they will soon be found incorrect.

(3) Therefore, often, it is hard to use epidemiological results.

I think this argument is valid, or close enough for these purposes. I think that (1) does not need supporting: it is obviously true (or obviously enough for these purposes). The weight is on (2), and my argument for (2) is that from the outside, it is simply too hard to tell whether a given issue – for example, the effect of HRT on heart disease, or the effect of acetaminophen (paracetamol) on asthma – is still part of an ongoing debate, or can reasonably be regarded as settled. The problem infects even results that epidemiologists would widely regard as settled: the credibility of the evidence on the effect of smoking on lung cancer is not helped by reversals over HRT, for example, because from the outside, it is not unreasonable to wonder what the relevant difference is between the pronouncements on HRT and the pronouncements on lung cancer and smoking. There is a difference: my point is that epidemiology lacks a clear framework for saying what it is.

My claim, then, is that the main challenge facing the use of epidemiological results is not “translation” in any sense, but stability; and that devising a framework for expressing to non-epidemiologists (“users”, if you like) how stable a given result is, given best available current knowledge, is where efforts currently being directed at “translation” would be better spent.

Comments on this line of thought would be very welcome. I am happy to share the slides for my talk with anyone who might be interested.